Stacked LSTM Sequence-to-Sequence Autoencoder with Feature Selection for Daily Solar Radiation Prediction: A Review and New Modeling Results

نویسندگان

چکیده

We review the latest modeling techniques and propose new hybrid SAELSTM framework based on Deep Learning (DL) to construct prediction intervals for daily Global Solar Radiation (GSR) using Manta Ray Foraging Optimization (MRFO) feature selection select model parameters. Features are employed as potential inputs Long Short-Term Memory a seq2seq autoencoder system in final GSR prediction. Six solar energy farms Queensland, Australia considered evaluate method with predictors from Climate Models ground-based observation. Comparisons carried out among DL models (i.e., Neural Network) conventional Machine algorithms Gradient Boosting Regression, Random Forest Extremely Randomized Trees, Adaptive Regression). The hyperparameters deduced grid search, simulations demonstrate that is accurate compared other well persistence methods. obtains quality high coverage probability low interval errors. modelling results utilising an deep learning show our approach acceptable predict radiation, therefore useful monitoring systems capture stochastic variations power generation due cloud cover, aerosols, ozone changes, atmospheric attenuation factors.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Seismic Data Forecasting: A Sequence Prediction or a Sequence Recognition Task

In this paper, we have tried to predict earthquake events in a cluster of seismic data on pacific ring of fire, using multivariate adaptive regression splines (MARS). The model is employed as either a predictor for a sequence prediction task, or a binary classifier for a sequence recognition problem, which could alternatively help to predict an event. Here, we explain that sequence prediction/r...

متن کامل

A New Framework for Distributed Multivariate Feature Selection

Feature selection is considered as an important issue in classification domain. Selecting a good feature through maximum relevance criterion to class label and minimum redundancy among features affect improving the classification accuracy. However, most current feature selection algorithms just work with the centralized methods. In this paper, we suggest a distributed version of the mRMR featu...

متن کامل

Sequence-to-Sequence Prediction of Vehicle Trajectory via LSTM Encoder-Decoder Architecture

In this paper, we propose a deep learning-based vehicle trajectory prediction technique which can generate the future trajectory sequence of the surrounding vehicles in real time. We employ the encoder-decoder architecture which analyzes the pattern underlying in the past trajectory using the long short term memory (LSTM)-based encoder and generates the future trajectory sequence using the LSTM...

متن کامل

a new type-ii fuzzy logic based controller for non-linear dynamical systems with application to 3-psp parallel robot

abstract type-ii fuzzy logic has shown its superiority over traditional fuzzy logic when dealing with uncertainty. type-ii fuzzy logic controllers are however newer and more promising approaches that have been recently applied to various fields due to their significant contribution especially when the noise (as an important instance of uncertainty) emerges. during the design of type- i fuz...

15 صفحه اول

Google's Next-Generation Real-Time Unit-Selection Synthesizer Using Sequence-to-Sequence LSTM-Based Autoencoders

A neural network model that significant improves unitselection-based Text-To-Speech synthesis is presented. The model employs a sequence-to-sequence LSTM-based autoencoder that compresses the acoustic and linguistic features of each unit to a fixed-size vector referred to as an embedding. Unit-selection is facilitated by formulating the target cost as an L2 distance in the embedding space. In o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Energies

سال: 2022

ISSN: ['1996-1073']

DOI: https://doi.org/10.3390/en15031061